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A soliton on a vortex filament 

By HIDENORI HASIMOTO 
Institute of Space and Aeronautical Science, University of Tokyo 

(Received 26 April 1971) 

The intrinsic equation governing the curvature 5 and the torsion r of an isolated 
very thin vortex filament without stretching in an incompressible inviscid fluid 
is reduced to a non-linear Schrodinger equation 

where t is the time, s the length measured along the filament, @ is the complex 
variable 

11. = Kexp (i!: rds)  

and A is a function oft. It is found that this equation yields a solution describing 
the propagation of a loop or a hump of helical motion along a line vortex, with a 
constant velocity 27. The relation to the system of intrinsic equations derived 
by Betchov (1965) is discussed. 

1. Introduction 
Vortex filaments in a perfect fluid are known to preserve their identity and 

extensive investigations have been made on the two-dimensional motion of a, 
system of vortices. In  the three-dimensional case, however, few examples axe 
known even for a single filament owing to its complicated behaviour. 

Recently the so-called localized induction equation which describes asymp- 
totically the motion of a very thin vortex filament has been derived by Arms 
(1962; from a private communication to Hama) and has been used by Hama 
(1962, 1963) in order to describe the motion of curved filaments of several 
shapes. For its derivation Batchelor's book (1967) may be consulted. 

The essential feature of this method is the approximation of the local motion 
of the filament by that of a thin cirular vortex with the same curvature and the 
neglect of slow variation of its coefficient. As long as the interaction between far 
distant portions along the filament is neglected, this approximation seems 
to be valid at least qualitatively, as shown numerically by Hama (1962) for a 
parabola and experimentally by Kambe & Takao (1971) for a distorted vortex 
ring. On the basis of this approximation Hasimoto (1971) has shown that the 
shape of a simply rotating plane filament is that of a plane elastic filament, i.e. 
the elastica. 

In  order to consider the complicated behaviour of the filament, however, a 
system of intrinsic equations for the curvature and the torsion of the filament 
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seems to be useful. Betchov (1965) has derived such a system of equations, 
which may be reduced to those for a fictitious gas with negative pressure 
accompanied with complicated non-linear dispersive stresses. 

In  this paper, a simple intrinsic equation for a complex variable with the curva- 
ture as its amplitude and the torsion angle as its phase is derived by a simple 
procedure starting from the fundamental equations of differential geometry. 
This equation is found to  be the kind of non-linear Schrodinger equation which 
appears in the theories of non-linear optics and plasma physics (Karpman & 
Krushkal 1969; Taniuti & Yajima 1969; Asano, Taniuti & Yajima 1969). It is 
shown that this equation admits a solution describing a solitary wave propa- 
gating along a line vortex filament, which induces various types of motion of the 
filament according to the value of the torsion. In  an appendix, a deduction of 
Betchov’s intrinsic equation is made from our equation. 

2. Fundamental equations 
The motion of a very thin isolated vortex filament X = X(s, t )  of radius e in an 

incompressible unbounded fluid by its own induction is described asymptotically 

aX/at = GKb, (2.1) 
by 

where s is the length measured along the filament, t the time, K the curvature, b 
the unit vector in the direction of the binormal and G is the coefficient of local 
induction. 

which is proportional to the circulation I’ of the filament and may be regarded 
as constant if we neglect the slow variation of the logarithm compared with that 
of its argument. It should be noted that the interaction of order one between 
far distant portions of the filament is neglected in this approximation and the 
local motion is approximated by that of a thin circular ring with the same curva- 
ture. In  this approximation we are obliged to neglect the tangential motion 
along the filament due to stretching although it is a very important aspect in 
many cases. 

Then a suitable choice of the units of time and length reduces (2.1) to the non- 
dimensional form 

G = (r/4n) [log (I/€) + O(l) l ,  (2.2) 

k = Kb, (2.3) 

where a dot denotes a/at. Equation (2.3) should be supplemented by the equations 
of differential geometry (the Frenet-Seret formulae) 

X’ = t, t’ = K n ,  (2.41, (2.5) 

n’ = Tb-KKt, b‘ = - Tn, (2.6), (2.7) 

where a prime denotes alas, 7 is the torsion and t, n and b are a right-handed sys- 
tem of mutually perpendicular unit vectors parallel to the tangent, the principal 
normal and the binormal respectively. 

Combining (2.6) and (2.7) we have 

(n + ib)’ = - i7(n + ib) - K f ,  (2.8) 
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which suggests the introduction of new variables 

N = (n+ib)exp i ( kd8) 
and @ = Kexp ( i / :Tds ) .  

Then, from (2.8) and (2.5) 

and 

N’ = -$t, 

t’ = Re[@N] = B($N+$N), 

and @ = Kexp ( i / :Tds ) .  

Then, from (2.8) and (2.5) 

and 

N’ = -$t, 

t’ = Re[@N] = B($N+$N), 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where the bar denotes the complex conjugate and Re the real part. 

= A’ = ( K b ) ’  = K’b-Km = KRe[(K’/K+iT) (b+in)], 

On the other hand, from (2.4), (2.3) and (2.7) we have 

(2.13) 

i.e. t = Re[i@’N] = $i($’N-$’N), (2.14) 

where we have made use of (2.9) and (2.10). 
It should be noted that orthogonality relations hold between t, N and N: 

t . t = l ,  N . N = 2 ,  N.N=O, N.t=O,e tc .  (2.15) 

The equation governing the evolution of N is obtained as follows. By putting 

N = aN+pN+Yt, (2.16) 

noting the orthogonality (2.15) and its time derivative and using (2.14) and 
(2.15), we can determine the coefficients a, p and y in the following way. 

a+Z = g(N.m+R.N) = ia(N.m)/at = 0, i.e. a = iR, 
= 4N.N = &a(N.N)/at = 0, 

y = -N. t  = -i$’, (2.17) 

where R is an unknown real function. Thus we have 

N = i(RN-$’t). (2.18) 

The time derivative of (2.11) and the s derivative of (2.18) yield respectively 

N = -$t-$t = -$t-&i@(+”-$“) (2.19) 

and 

where we have made use of (2.14), (2.11) and (2.12). 

we have 

N = i[R’N - R@t - vt - &T($N + $N)], (2.20) 

Equating the coefficients of t and the coefficients iN (those of R are identical) 

-$ = - i ( v + R @ )  (2.21) 

and +#rp = R’ - Sf$. (2.22) 

The comparison of expressions for from (2.12) and (2.14) leads only to (2.21). 

R = *($$+A), 
Solving (2.22), we have 

which reduces (2.21) to 
-- 1 a@ = T + : ( ] $ p + A ) @ ,  
i at as2 

(2.23) 

(2.24) 
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where A is a real function oft which can be eliminated by the introduction of the 
new variable 

(2.25) 

This transformation is nothing but a shift of the origin of integration in (2.9) and 
(2.10); therefore we may take A in (2.24) to be zero without loss of generality. 

Equation (2.24) is the non-linear Schrodinger equation which appears in the 
theory of non-linear optics and of plasma physics. Hence the results from these 
cases can be easily transferred to our problem. 

3. Solitary wave 
As a special case let us look for the solution of (2.24) which describes a solitary 

wave (soliton) which propagates steadily with a constant velocity c along the 
filament which is straight at infinity, i.e. 

K =  0, as s-+co. (3.1) 

5 = 5-ct, (3.2) 

In  the wave frame of reference, in which K and r are functions of 

i.e. (3.3) 

the real and imaginary parts of (2.24) yield respectively 

- CK[T(<)  - 7 (  - Ct)]  = K” - K72 + &(K2 f A )  K (3.4) 

and CK’ = 2K‘TfKT‘. (3.5) 

( C -  27) K2 = 0,  (3.6) 

T = T,, = +c = constant (3.7) 

Equation (3.5) can be integrated to give 

where we have used (3.1) to determine the integration constant. According to 
(3.6) we have 

if K is not identically zero; i.e. the torsion is constant along the filament and the 
velocity of propagation along the filament is twice the torsion. 

Then using (3.1), (3.4) is integrated to give 

K = 2v sech vc, 

A = 2(Tt - V2), 

(3.8) 

(3.9) 

provided that A is a constant determined by 

The actual shape of the filament is determined by substituting (3.7) and (3.8) 
into (2.4)-(2.7). For this purpose, it is convenient to solve the equation for b 
obtained by the substitution of n and t from (2.7) and (2.6) into (2.5): 

70(t’-~n) = [ ( 1 / ~ )  (b”+~$b)] ’+  Kb’ = 0, (3.10) 
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i.e. (3.11) 
a 3  a2 a 

dy3  dy2 d r  
- b + tanh y - b + (T2+ sech2y) - b + T2 tanh yb = 0,  

where y = v c  and T = T ~ / V .  (3.12) 

The solution of this equation can be easily obtained by noting that 

B = db/dy + tanh yb (3.13) 

is the solution of the equation 

d2B/dy2 + (T2 + 2 sech2y) B = 0,  

(tanhy T iT) e*iTv. 

which is satisfied by 
(3.14) 

(3.15) 

As particular solutions, we have 

b = sechy, (1-T2T2iTtanhy)e*iTy. (3.16) 

Next we substitute (3.16) into (2.7), (2.6) and (2.4), and determine the coeffi- 
cients so as to satisfy, without loss of generality, the conditions for the filament 
to be parallel to the x axis of the Cartesian co-ordinates (x, y, x) at infinity: i.e. 

t ,+1 as y - t co  (3.17) 
and n,+in, = -i(b,+ib,) = ei(ToE+v@)) as y -t co, (3.18) 

the latter condition being suggested by the asymptotic behaviour of the solution 
of (2.5)-(2.7) and the orthogonality relations between t, n and b. Here o-(t) is a 
real function oft and the suffices x, y, z denote x, y and z components respectively. 

After straightforward calculations we have 

X:x = s-(2p/v)tanhr, 

t:t ,  = 1-2psech2y, 

n: n, = 2psech2 y sinh y, 

b : b ,  = 2pTsech9, 

(3.19) I 
y+ix  = reio, 

n, + in, = - [l - 2p (tanhr - iT) tanhq] ei@, 

$,+it, = -vr(tanhy-iT):ei@, 

b,+ib, = ip(l-T2-22iTtanhy)ei@, 

Here the integration constants such as a(t) which are functions of time have been 
determined so that X and b satisfy (2.3) in the rest co-ordinate system. 

4. Numerical results and discussions 
Figures 1 and 2 show the projections of the filament on the x,y, x , z  and z,y 

planes at an instant of time (say t = 0) .  It is seen that the filament is confined on 
an envelope of radius r (except near the centre x N 0 if T < 1) which decreases 
from its maximum 2p/v at x = 0 t o  2p/[v cosh (YX 2p)] N 0 as x -+ 00. Our 
filament is a spiral surrounding this envelope, being approximated by 

y+iz  = rexp(iO) -+ r e ~ p [ i 7 ~ ( ~ ~ 2 p / v ) + i ( ~ ~ - ~ ~ ) t ]  as x+ IOO. 

31 F L M  51 
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However its behaviour near x = 0 depends on the value of T. As long as T 2 1, 
y + i z  is a single-valued function of x, since x is a monotonic function of 7. If 
T = 1, dxldy is zero at x = 7 = 0 and the cusp of the envelope appears at x = 0, 
r = 2 4 v ,  though no singularity exists on the filament. 

t 
I- 

v s - d  

t 

(4 
FIGURE 1. - , projection of filament on the z, y plane with the vy axis vertical; ----, 
projection on 5,  z plane with YZ axis vertical; . . . . . . . . . , envelope with vr axis vertical; the 
vz axis is horizontal in each case. (a )  T = 2-0, ( b )  T = 1.0, ( c )  T = 0.5. 

For T < 1 the filament is twisted and yields a loop in its side view, though no 
real crossing point exists. As the torsion is decreased the projection to the z, y 
plane is flattened and in the limit T --f 0 the filament is a plane curve with a 
crossing point which has been noted by Betchov to be unacceptable. 

The velocity v = X = Kb of the filament is obtained from (2.3) and (3.19), also 
using (3.20) and (3.12), as 

v, = 4p7 sech27 = T ~ ( T ~  + v2)  r2, (4.1) 

w = v,+iv, = q O t + W r a d ,  (4.2) 
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where 

and 

It is seen that the motion can be decomposed into three parts: (i) longitudinal 
motion v,, (ii) rotation about the z axis a,,, and (iii) radial contraction and 
expansion wraa. 

a,,, = i v y  1 - T2) (y + i z )  = i(v2 - 73 (y + i x )  

a,,, = 2v2T(y + i x )  tanh 7 = 2v7,(y + iz) tanh 7. 
(4.3) 

(4.4) 

(Q) 

u y  t 

FIGURE 2. Projection of the filament on the z ,  y plane. ( a )  T = 2.0, 
( b )  T = 1.0, (c) T = 0.5. 

The rotation changes its sign according to that of T- 1, i.e. A in (3.9). If 
T < 1 the direction of rotation is the same as that of the vorticity at x = 5 a3 
and if T > 1 it is the opposite. It is interesting to note that no actual rotation 
occurs ifT = 1, i.e. A = 0. This behaviour may be attributed to the appearance of 
a loop in the side view for T < 1, in contrast to the dominance of the spiral for 
T > 1 .  

The magnitude of vz depends on the curvature, which is proportional to r ,  and 
the orientation of the looping to the x axis, b,, which is proportional to 7r. The 

31-2 
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faster motion of the larger looping seems to be coupled with the radial expansion 
bywrad, leading to the propagation of our solitary wave. along the filament. Notice 
that we have radial expansion or contraction according as 77 is positive or nega- 
tive. Some of these features are seen to be in accordance with Hama's (1963) 
numerical experiments on the filament which has Gaussian shape initially. 

Though this behaviour of the vortex filament may be temporary, judging from 
its approximate nature and possible instability, the author hopes that it might be 
observed in some vortex system such as highly sheared stream or rotating flow. 
In  this connexion, it may be noted that Yajima & Outi (1971) made a numerical 
calculation on the stability of solitary waves for a non-linear Schrodinger 
equation and have shown that they are fairly stable. 

The author would like to express his thanks to Professor Isao Imai for helpful 
discussions. This work has been supported by Grant-in-Aid from the Japan 
Ministry of Education. 

Appendix. Relation to Betchov's intrinsic equation 

two variables 
Betchov (1 965) has derived a system of intrinsic equations governing essentially 

p = K ~ ,  u = 27. (A 1) 

In order to derive his equation it is convenient to introduce the potential 

into (2.24) and differentiate @ = y/Pexp (ti@) logarithmically. Comparing the 
real and imaginary parts of 

and differentiating the former with respect to s, we have 

p+uf' = -pu'. (A 5 )  

These are reduced to the equations given by Betchov (1965, equations (2.16) 
and (2.23)) if we put p = K and u = 2T. 

It may be noted that (A 5) and (A4) supplemented by (A 5 )  yield the conserva- 
tion forms 

and 

&+-(pu) a = 0 
at as 

as a [  a2 i a 
--(pu)+- at p u ~ - ~ p 2 - p ~ ( ( l o g p )  = 0 

respectively. By assuming the same dependence on < as that in (3.2) and (3.3) 
we can obtain the same results as in Q 3. 
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